The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.
نویسندگان
چکیده
Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.
منابع مشابه
Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor.
Dopaminergic transmission within limbic regions of the brain is highly dependent on the regulation of D2 receptor activity. Here we show that the neuronal calcium sensor-1 (NCS-1) can mediate desensitization of D2 dopamine receptors. Analysis of D2 receptors expressed in human embryonic kidney 293 cells indicates that NCS-1 attenuates agonist-induced receptor internalization via a mechanism tha...
متن کاملHistamine H3 Receptor Regulates Sensorimotor Gating and Dopaminergic Signaling in the Striatum.
The brain histamine system has been implicated in regulation of sensorimotor gating deficits and in Gilles de la Tourette syndrome. Histamine also regulates alcohol reward and consumption via H3 receptor (H3R), possibly through an interaction with the brain dopaminergic system. Here, we identified the histaminergic mechanism of sensorimotor gating and the role of histamine H3R in the regulation...
متن کاملPresence of prejunctional D2-dopaminoceptors and α2-adrenoceptors on the cholinergic nerve of the common bile duct of guinea pig
On most adrenergic and cholinergic nerve terminals, prejunctional α-adrenoceptors belonging to the α2-subtype have been identified. Activation of these receptors will decrease the release of norepinephrine. It has been reported that several isolated tissue preparations contain prejunctional dopamine receptors, the stimulation of which inhibits neurotransmission. It has remained uncertain whethe...
متن کاملD2 dopamine antisense RNA expression vector, unlike haloperidol, produces long-term inhibition of D2 dopamine-mediated behaviors without causing Up-regulation of D2 dopamine receptors.
Long-term inhibition of D2 dopamine receptors using classic D2 dopamine receptor antagonists such as haloperidol often causes a compensatory up-regulation of the D2 dopamine receptors. We investigated whether the long-term inhibition of D2 dopamine receptors using an eukaryotic expression vector housing a cDNA sequence encoding an antisense RNA directed to the D2 dopamine receptor transcript (D...
متن کاملDopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain
Catecholamine receptor-mediated modulation of glutamatergic or GABAergic transmission in the striatum as well as basal forebrain (BF) has been intensively studied during these two decades. In the striatum, activation of dopamine (DA) D2 receptors in GABAergic terminals inhibits GABA release onto cholinergic interneurons by selective blockade of N-type calcium channels. In the BF, glutamatergic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 33 شماره
صفحات -
تاریخ انتشار 2007